# Question csu dominguez hills omg322 ch. 3

Question 1                                                                                                                                          1 out of 1 points

A heuristic solution is

Question 2                                                                                                                                          1 out of 1 points

How many decision variables are there in a transportation problem which has 5 supply points and 4 demand points?

Question 3                                                                                                                                        1 out of 1 points

Exhibit 3.1

The following questions are based on this problem and accompanying Excel windows.

Jones Furniture Company produces beds and desks for college students. The production process requires carpentry and varnishing. Each bed requires 6 hours of carpentry and 4 hour of varnishing. Each desk requires 4 hours of carpentry and 8 hours of varnishing. There are 36 hours of carpentry time and 40 hours of varnishing time available. Beds generate \$30 of profit and desks generate \$40 of profit. Demand for desks is limited, so at most 8 will be produced.

Let          X1 = Number of Beds to produce

X2 = Number of Desks to produce

The LP model for the problem is

 MAX: 30 X1 + 40 X2 Subject to: 6 X1 + 4 X2£ 36 (carpentry) 4 X1 + 8 X2£ 40 (varnishing) X2£ 8 (demand for desks) X1, X2³ 0

 A B C D E 1 Jones Furniture 2 3 Beds Desks 4 Number to make: Total Profit: 5 Unit profit: 30 40 6 7 Constraints: Used Available 8 Carpentry 6 4 36 9 Varnishing 4 8 40 10 Desk demand 1 8

Refer to Exhibit 3.1. Which cells should be changing cells in this problem?

Question 4                                                                                                                                          0 out of 1 points

How many constraints are there in a transportation problem which has 5 supply points and 4 demand points? (ignore the non-negativity constraints)

Question 5                                                                                                                                          1 out of 1 points

Exhibit 3.1

The following questions are based on this problem and accompanying Excel windows.

ones Furniture Company produces beds and desks for college students. The production process requires carpentry and varnishing. Each bed requires 6 hours of carpentry and 4 hour of varnishing. Each desk requires 4 hours of carpentry and 8 hours of varnishing. There are 36 hours of carpentry time and 40 hours of varnishing time available. Beds generate \$30 of profit and desks generate \$40 of profit. Demand for desks is limited, so at most 8 will be produced.

Let          X1 = Number of Beds to produce

X2 = Number of Desks to produce

The LP model for the problem is

 MAX: 30 X1 + 40 X2 Subject to: 6 X1 + 4 X2£ 36 (carpentry) 4 X1 + 8 X2£ 40 (varnishing) X2£ 8 (demand for desks) X1, X2³ 0

 A B C D E 1 Jones Furniture 2 3 Beds Desks 4 Number to make: Total Profit: 5 Unit profit: 30 40 6 7 Constraints: Used Available 8 Carpentry 6 4 36 9 Varnishing 4 8 40 10 Desk demand 1 8

Refer to Exhibit 3.1. Which cells should be the constraint cells in this problem?

Question 6                                                                                                                                          1 out of 1 points

Exhibit 3.2

The following questions are based on this problem and accompanying Excel windows.The Byte computer company produces two models of computers, Plain and Fancy. It wants to plan how many computers to produce next month to maximize profits. Producing these computers requires wiring, assembly and inspection time. Each computer produces a certain level of profits but faces only a limited demand. There are also a limited number of wiring, assembly and inspection hours available in each month. The data for this problem is summarized in the following table.

 ComputerModel Profit perModel (\$) Maximumdemand forproduct Wiring HoursRequired AssemblyHoursRequired InspectionHoursRequired Plain 30 80 .4 .5 .2 Fancy 40 90 .5 .4 .3 Hours Available 50 50 22

 Let X1 = Number of Plain computers to produce X2 = Number of Fancy computers to produce MAX: 30 X1 + 40 X2 Subject to: .4 X1 + .5 X2£ 50 (wiring hours) .5 X1 + .4 X2£ 50 (assembly hours) .2 X1 + .2 X2£ 22 (inspection hours) X1£ 80 (Plain computers demand) X2£ 90 (Fancy computers demand) X1, X2³ 0

 A B C D E 1 Byte Computer Company 2 3 Plain Fancy 4 Number to make: Total Profit: 5 Unit profit: 30 40 6 7 Constraints: Used Available 8 Wiring 0.4 0.5 50 9 Assembly 0.5 0.4 50 10 Inspection 0.2 0.3 22 11 Plain Demand 1 80 12 Fancy Demand 1 90

Refer to Exhibit 3.2. Which cells should be the constraint cells in this problem?

Question 7                                                                                                                                         1 out of 1 points

Numeric constants should be

Question 8                                                                                                                                         1 out of 1 points

What is the significance of an absolute cell reference in Excel?

Question 9                                                                                                                                          1 out of 1 points

An LP problem with a feasible region will have

Question 10                                                                                                                                       0 out of 1 points

Problems which have only integer solutions are called

Question 11                                                                                                                                       1 out of 1 points

Exhibit 3.1

The following questions are based on this problem and accompanying Excel windows.Jones Furniture Company produces beds and desks for college students. The production process requires carpentry and varnishing. Each bed requires 6 hours of carpentry and 4 hour of varnishing. Each desk requires 4 hours of carpentry and 8 hours of varnishing. There are 36 hours of carpentry time and 40 hours of varnishing time available. Beds generate \$30 of profit and desks generate \$40 of profit. Demand for desks is limited, so at most 8 will be produced.

 Let X1 = Number of Beds to produce X2 = Number of Desks to produce

The LP model for the problem is

 MAX: 30 X1 + 40 X2 Subject to: 6 X1 + 4 X2£ 36 (carpentry) 4 X1 + 8 X2£ 40 (varnishing) X2£ 8 (demand for desks) X1, X2³ 0

 A B C D E 1 Jones Furniture 2 3 Beds Desks 4 Number to make: Total Profit: 5 Unit profit: 30 40 6 7 Constraints: Used Available 8 Carpentry 6 4 36 9 Varnishing 4 8 40 10 Desk demand 1 8

Refer to Exhibit 3.1. What formula should be entered in cell D8 in the accompanying Excel spreadsheet to compute the amount of carpentry used?

Question 12                                                                                                                                       1 out of 1 points

Exhibit 3.1

The following questions are based on this problem and accompanying Excel windows.Jones Furniture Company produces beds and desks for college students. The production process requires carpentry and varnishing. Each bed requires 6 hours of carpentry and 4 hour of varnishing. Each desk requires 4 hours of carpentry and 8 hours of varnishing. There are 36 hours of carpentry time and 40 hours of varnishing time available. Beds generate \$30 of profit and desks generate \$40 of profit. Demand for desks is limited, so at most 8 will be produced.

 Let X1 = Number of Beds to produce X2 = Number of Desks to produce

The LP model for the problem is

 MAX: 30 X1 + 40 X2 Subject to: 6 X1 + 4 X2£ 36 (carpentry) 4 X1 + 8 X2£ 40 (varnishing) X2£ 8 (demand for desks) X1, X2³ 0

 A B C D E 1 Jones Furniture 2 3 Beds Desks 4 Number to make: Total Profit: 5 Unit profit: 30 40 6 7 Constraints: Used Available 8 Carpentry 6 4 36 9 Varnishing 4 8 40 10 Desk demand 1 8

Refer to Exhibit 3.1. What formula should be entered in cell E5 in the accompanying Excel spreadsheet to compute total profit?

Question 13                                                                                                                                       1 out of 1 points

Exhibit 3.1

The following questions are based on this problem and accompanying Excel windows.Jones Furniture Company produces beds and desks for college students. The production process requires carpentry and varnishing. Each bed requires 6 hours of carpentry and 4 hour of varnishing. Each desk requires 4 hours of carpentry and 8 hours of varnishing. There are 36 hours of carpentry time and 40 hours of varnishing time available. Beds generate \$30 of profit and desks generate \$40 of profit. Demand for desks is limited, so at most 8 will be produced.

 Let X1 = Number of Beds to produce X2 = Number of Desks to produce

The LP model for the problem is

 MAX: 30 X1 + 40 X2 Subject to: 6 X1 + 4 X2£ 36 (carpentry) 4 X1 + 8 X2£ 40 (varnishing) X2£ 8 (demand for desks) X1, X2³ 0

 A B C D E 1 Jones Furniture 2 3 Beds Desks 4 Number to make: Total Profit: 5 Unit profit: 30 40 6 7 Constraints: Used Available 8 Carpentry 6 4 36 9 Varnishing 4 8 40 10 Desk demand 1 8

Refer to Exhibit 3.1. Which of the following statements represent the carpentry, varnishing and limited demand for desks constraints?

Question 14                                                                                                                                      1 out of 1 points

Exhibit 3.2

The following questions are based on this problem and accompanying Excel windows.

The Byte computer company produces two models of computers, Plain and Fancy. It wants to plan how many computers to produce next month to maximize profits. Producing these computers requires wiring, assembly and inspection time. Each computer produces a certain level of profits but faces only a limited demand. There are also a limited number of wiring, assembly and inspection hours available in each month. The data for this problem is summarized in the following table.

 Let X1 = Number of Beds to produce X2 = Number of Desks to produce

The LP model for the problem is

 MAX: 30 X1 + 40 X2 Subject to: 6 X1 + 4 X2£ 36 (carpentry) 4 X1 + 8 X2£ 40 (varnishing) X2£ 8 (demand for desks) X1, X2³ 0

 A B C D E 1 Jones Furniture 2 3 Beds Desks 4 Number to make: Total Profit: 5 Unit profit: 30 40 6 7 Constraints: Used Available 8 Carpentry 6 4 36 9 Varnishing 4 8 40 10 Desk demand 1 8

Refer to Exhibit 3.1. Which of the following statements represent the carpentry, varnishing and limited demand for desks constraints?

Question 15                                                                                                                                       1 out of 1 points

The constraints X1³ 0 and X2³ 0 are referred to as

Question 16                                                                                                                                       0 out of 1 points

Exhibit 3.2

The following questions are based on this problem and accompanying Excel windows.

The Byte computer company produces two models of computers, Plain and Fancy. It wants to plan how many computers to produce next month to maximize profits. Producing these computers requires wiring, assembly and inspection time. Each computer produces a certain level of profits but faces only a limited demand. There are also a limited number of wiring, assembly and inspection hours available in each month. The data for this problem is summarized in the following table.

 ComputerModel Profit perModel (\$) Maximumdemand forproduct Wiring HoursRequired AssemblyHoursRequired InspectionHoursRequired Plain 30 80 .4 .5 .2 Fancy 40 90 .5 .4 .3 Hours Available 50 50 22

 Let X1 = Number of Plain computers to produce X2 = Number of Fancy computers to produce MAX: 30 X1 + 40 X2 Subject to: .4 X1 + .5 X2£ 50 (wiring hours) .5 X1 + .4 X2£ 50 (assembly hours) .2 X1 + .2 X2£ 22 (inspection hours) X1£ 80 (Plain computers demand) X2£ 90 (Fancy computers demand) X1, X2³ 0

 A B C D E 1 Byte Computer Company 2 3 Plain Fancy 4 Number to make: Total Profit: 5 Unit profit: 30 40 6 7 Constraints: Used Available 8 Wiring 0.4 0.5 50 9 Assembly 0.5 0.4 50 10 Inspection 0.2 0.3 22 11 Plain Demand 1 80 12 Fancy Demand 1 90

Refer to Exhibit 3.2. What formula should be entered in cell E5 in the accompanying Excel spreadsheet to compute total profit?

Question 17                                                                                                                                       1 out of 1 points

Exhibit 3.2

The following questions are based on this problem and accompanying Excel windows.

The Byte computer company produces two models of computers, Plain and Fancy. It wants to plan how many computers to produce next month to maximize profits. Producing these computers requires wiring, assembly and inspection time. Each computer produces a certain level of profits but faces only a limited demand. There are also a limited number of wiring, assembly and inspection hours available in each month. The data for this problem is summarized in the following table.

 ComputerModel Profit perModel (\$) Maximumdemand forproduct Wiring HoursRequired AssemblyHoursRequired InspectionHoursRequired Plain 30 80 .4 .5 .2 Fancy 40 90 .5 .4 .3 Hours Available 50 50 22

 Let X1 = Number of Plain computers to produce X2 = Number of Fancy computers to produce MAX: 30 X1 + 40 X2 Subject to: .4 X1 + .5 X2£ 50 (wiring hours) .5 X1 + .4 X2£ 50 (assembly hours) .2 X1 + .2 X2£ 22 (inspection hours) X1£ 80 (Plain computers demand) X2£ 90 (Fancy computers demand) X1, X2³ 0

 A B C D E 1 Byte Computer Company 2 3 Plain Fancy 4 Number to make: Total Profit: 5 Unit profit: 30 40 6 7 Constraints: Used Available 8 Wiring 0.4 0.5 50 9 Assembly 0.5 0.4 50 10 Inspection 0.2 0.3 22 11 Plain Demand 1 80 12 Fancy Demand 1 90

Refer to Exhibit 3.2. What formula should be entered in cell D8 in the accompanying Excel spreadsheet to compute the amount of wiring used?

Question 18                                                                                                                                      1 out of 1 points

Models which are setup in an intuitively appealing, logical layout tend to be the most

Question 19                                                                                                                                      1 out of 1 points

Which command is equivalent to =SUMPRODUCT(A1:A3,B1:B3)?

Question 20                                                                                                                                       1 out of 1 points

What does the Excel =SUMPRODUCT(A1:A5,C6;C10) command do?

Pages (550 words)
Approximate price: -

Why Work with Us

Top Quality and Well-Researched Papers

We always make sure that writers follow all your instructions precisely. You can choose your academic level: high school, college/university or professional, and we will assign a writer who has a respective degree.

We have a team of professional writers with experience in academic and business writing. Many are native speakers and able to perform any task for which you need help.

Free Unlimited Revisions

If you think we missed something, send your order for a free revision. You have 10 days to submit the order for review after you have received the final document. You can do this yourself after logging into your personal account or by contacting our support.

Prompt Delivery and 100% Money-Back-Guarantee

All papers are always delivered on time. In case we need more time to master your paper, we may contact you regarding the deadline extension. In case you cannot provide us with more time, a 100% refund is guaranteed.

Original & Confidential

We use several writing tools checks to ensure that all documents you receive are free from plagiarism. Our editors carefully review all quotations in the text. We also promise maximum confidentiality in all of our services.

Our support agents are available 24 hours a day 7 days a week and committed to providing you with the best customer experience. Get in touch whenever you need any assistance.

Try it now!

## Calculate the price of your order

Total price:
\$0.00

How it works?

Fill in the order form and provide all details of your assignment.

Proceed with the payment

Choose the payment system that suits you most.

Our Services

No need to work on your paper at night. Sleep tight, we will cover your back. We offer all kinds of writing services.

## Essay Writing Service

No matter what kind of academic paper you need and how urgent you need it, you are welcome to choose your academic level and the type of your paper at an affordable price. We take care of all your paper needs and give a 24/7 customer care support system.